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Collisions between two dissipative optical bullets
separated in space
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We present the numerical results of both head-on and non-head-on collisions between two stable dissipa-
tive optical bullets (DOBs) in a three-dimensional complex Ginzburg-Landau equation with cubic-quintic
nonlinearity. The system parameters chosen are in the coexistence regions for both stationary DOBs and
double bullet complexes (DBCs). By varying the initial velocities v and the impact parameters P which
represent the distance between the parallel trajectories of colliding bullets, we observe three generic proper-
ties of the bullets: fusion, fission, and quasi-elastic collisions. A novel and interesting behavior is observed
in the results, in which two or three DBCs occur in non-head-on collisions at intermediate values of v.
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Recently, the concept of the dissipative soliton, which
is rooted in the classical soliton theory, the nonlinear
dynamics theory of bifurcations, and the concept of self-
organization proposed by Prigogine, has received in-
creased attention[1]. Dissipative solitons are recognized
as fixed localized solutions resulting from a double bal-
ance: between dispersion and nonlinearity on one hand
and between gain and loss on the other hand. Taking
fiber laser as an example, the high-order vector soliton[2]

and the dissipative dark soliton[3] occur as the balance
between laser gain saturation and output loss, and the
balance between cavity dispersion and the fiber nonlin-
ear Kerr effect. Further, all dissipative solitons can only
survive in the presence of a continuous energy supply.
The cubic quintic complex Ginsburg-Landau equation
(CGLE) is one of the notable models to describe dissi-
pative solitons and is also applied to describe a variety
of phenomena in optics. For example, CGLE appears
in resonant atomic systems under electromagnetically
induced transparency[4] and gain-assisted systems[5,6].

The dissipative optical system described by CGLE re-
ceives solitons in one-, two-, and three-dimensional (1D,
2D, and 3D)[7]. The formed solitons can propagate sta-
bly, provided that the system parameters are carefully
chosen in the specified regions. 1D and 2D dissipa-
tive solitons have been studied extensively[4,8], but the
solitons in 3D systems have not. The spatial-temporal
soliton in 3D dissipative optical systems, usually called
dissipative optical bullet (DOB), is created by the com-
bined interplay of physical effects such as gain and loss,
spectral filtering and dispersion, and diffraction and non-
linearity. Similar to what atoms are combined together
to form a diatomic molecule, DOBs can be bound into
the bullet molecule as well. The bullet molecule, called
double bullet complex (DBC), appears as a localized
structure that can be stationary, pulsating, and rotating.
Meanwhile, DOBs can coexist with DBCs in nonlinear
dissipative systems, which form some parameter regions
of coexistence. The bistability in these regions can be
applied to switch to the desired state using an applied
control beam[9] which offers a well-controlled platform
for future investigations.

The interactions between DOBs are of fundamental
importance to wide applications in all-optical logic and
switching devices. A number of studies have been de-
voted to this subject. Using spherically symmetric
CGLE, Rosanov was the first to examine the interac-
tions between optical bullets in an anomalous dispersive
medium[7]. Mihalache et al. investigated the collisions
between spatiotemporal dissipative vortex solitons[10].
Soto-Crespo et al. showed that optical light bullets could
coexist with DBCs in nonlinear dissipative systems[9].
However, to the best of our knowledge, the dynamical
features of the collision between two DOBs separated in
space have not been studied well to date, especially in
the coexistence system parameter regions of DOB and
DBC. Therefore, in this letter, we present the numeri-
cal results for both head-on and non-head-on collisions
between two DOBs with different velocities in the coex-
istence region. The observations from these simulations
include fusion of the bullets into a rotating DBC, fission
into two or three bullets, and quasi-elastic collision. A
novel, interesting behavior is observed from the results:
two or three DBCs are generated at intermediate values
of velocities by carefully choosing the initial condition.

Our simulations are based on an extended CGLE model
whose normalized propagation equation is[9]
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The equation is written in “optical” notation, assum-
ing evolution along the propagation coordinate z of a
beam with the 3D cross section in the plane. In this
case, U(t, x, y, z) is the local amplitude of the normal-
ized envelope of the field, D is the group velocity dis-
persion coefficient, δ represents the linear loss (if nega-
tive), ε is the nonlinear gain coefficient (if positive), β
is the spectral filtering[11], µ characterizes the saturation
of the nonlinear gain (if negative), and κ is the param-
eter of quintic nonlinearity[12]. System parameters are
chosen in the right region where DOB and DBC can co-
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exist: D = 1, µ= −0.1, κ = −0.1, δ = −0.4, ε = 0.66,
and β = 0.1. Equation (1) is solved by the 3D split-
step Fourier method. Therefore, periodic boundary con-
ditions are used in x, y, and t. Most of the simulations
presented are carried out on a 256×256×256 mesh. For
each case, the initial configuration to simulate a station-
ary bullet is produced by a preliminary step. We use an
initial configuration in the following form:

U(t, x, y, z)=3.0 exp
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Given the initial radial symmetry of the solution, the
numerical integration of Eq. (1) can lead to a quick
self-trapping of the input pulse into a stable stationary
localized solution. One of the major characteristics of
the DOB and DBC is the total amount of energy Q,
which is defined by

Q(z) =
∫ ∞
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∫ ∞
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∫ ∞

−∞
|U(x, y, z, t)|2 dxdydt. (3)

If the solution remains localized, the energy evolves but
remains finite. When a stationary DOB or DBC is
reached, the total energy Q converges to a constant
value.

The collision in the 3D system is complicated because
the results depend on the equation parameters and the
initial conditions. Each of the DOBs is stable, but the
initial velocity and the impact parameter are still needed
to describe the collision angle and the initial positions
of the bullets. Therefore, to model a collision of the two
stable DOBs moving at a finite angle toward each other,
we use the following initial condition:
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where U0 is the stable stationary localized solution of
Eq. (1), and R stands for the initial separation between
two bullets (we set R = 16 in our simulation), and P
represents the impact parameter which is the distance
between the parallel trajectories of the colliding solitons.
Notably, the non-zero impact parameter can provide an
initial angular momentum which is an adequate condition
for the formation of a rotating DBC. The initial velocity
v, which represents the amount of spatial chirp, is related
to the angle of collision[13]. The collision angle plays an
important role in the collision problem in a variety of
non-integrable systems[14,15]. According to the waveg-
uide theory of Snyder et al.[16], a soliton can be viewed as
a guided mode of its own self-induced waveguide[17]. θc is
the (complementary) critical angle for the total internal
reflection in the waveguide. When they collide at θ > θc,
solitons go through each other unaffected[18,19], whereas
for θ < θc, solitons can couple light into each other’s
waveguides. Therefore, the collisions are inelastic, lead-
ing to fusion or fission[20]. Our results correspond with
the qualitative theory above.

A diagram summarizing the outcomes of the colli-
sions is shown in Fig. 1. Corresponding to each result,
we illustrated our observation using the contour plots of
|U(t = 0, x, y = 0, z)| in Figs. 2 and 3. The collisions with
a nonzero impact parameter cannot be properly studied

in the xz plane, so we select a set of snapshots of the
distribution of |U(t = 0, x, y, z = z0)| which are depicted
in Figs. 4 and 5. First, two cases of soliton fusion are
given in Fig. 2. For head-on collisions in Fig. 2(a), the
two DOBs initially move in opposite directions, and then
they collide in the center of the mesh and merge into a
single pulse. However, the simulations also show that the
formed structure is unstable and pulsates in the spatial
dimension over a relatively large interval of propagation
distance (from z = 10 to 420). Finally, this instability
destroys the bullets’ radial symmetry and triggers the
formation of a DBC with an energy around 184, which is
more than twice the energy (around 68) of a single bullet.
The regular serrated graphics with a width of about 9.2
in the contour plots of |U(t = 0, x, y = 0, z)| indicates the
formation of a DBC. Note that a detailed description of
the transition from a pulsating bullet to a rotating DBC
is also presented[21]. Non-head-on collisions can also re-
sult in soliton fusion, and a typical example is given in
Fig. 2(b). The initial condition here is the same as that
in the previous case except that the impact parameter P
is set to 0.5. However, compared with the head-on cases,

Fig. 1. Outcomes of collisions between two DOBs moving at
velocities ±v with impact parameters P . The black, light
gray, white, and dark gray colors mark the parameter regions
where the fusion, fission into two, fission into three, and quasi-
elastic collision have been observed. The upper boundary of
the diagram marks the critical value of the impact parameter
for different velocities.

Fig. 2. Contour plot of |U(t = 0, x, y = 0, z)| displaying the
fusion of two DOBs into a DBC for the same initial velocities
but different impact parameters: (a) R = 16, P = 0, v = 0.6;
(b) R = 16, P = 1.0, v = 0.6; (c) and (d) show the total en-
ergy Q versus their propagation z corresponding to the cases
in (a) and (b).
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Fig. 3. Contour plot of |U(t = 0, x, y = 0, z) | displaying
the fission of two colliding DOBs into two or three bullets for
both head-on collisions but at different velocities: (a) R = 16,
P = 0, v = 0.8; (b) R = 16, P = 0, v = 1.1. (c) and (d) Show
the total energy and the energy of the quiescent bullet corre-
sponding to the cases in (a) and (b).

short propagation distances are needed to form a DBC.
This is due to the nonzero impact parameter that gives
an initial angular momentum which serves as a seed for
the rotation at least at the birth of the rotating DBC.
After the complex is formed, it rotates with a constant
angular velocity space and possesses long-term stability
with constant energy.

Second, with the increase in initial velocity, solution
fission according to the scheme 1+1→1+1 is observed.
One example of head-on collision is shown in Fig. 3(a):
two bullets merge into a single pulse at first, but the
pulse fails to self-trap into a single DOB or a DBC. In-
stead, it gives rise to fission into two optical bullets after
short-term oscillation. Their energy suffers from slight
perturbation, but it can be restored immediately to the
initial value as shown in Fig. 3(c). In addition to energy
oscillation, the velocities of the two pulsating bullets
decrease due to inelastic collisions. Moreover, running
the simulations in the domain with periodic boundary
conditions, the two bullets collide with a smaller collision
angle in the boundary and merge into one bullet which
spontaneously transforms into a DBC as the case shown
in Fig. 2(a). For the non-head-on case as shown in Fig. 4,
however, the formation of the first fusion demonstrates
an interesting dynamic behavior including rotation and
elongation of spatial intensity profile. After fission into
two bullets, each one gets an initial angular momentum,
and the value of the offset between their trajectories in
the vertical direction increases after the collision. The
fission also causes some redistribution of energy, which
affects the spatial shape of each bullet after collision.
When the two bullets arrive at the boundary of the mesh
simultaneously, the value of the offset is greater than the
critical value. Without subsequent collision, the bullets
moving in the mesh with the same velocity evolve into
two rotating DBCs at z ≈ 100. Their rotation has the
same fixed angular velocity and rotates in the same di-
rection (counterclockwise), which is determined by the
initial conditions.

Third, in the narrow region marked white in Fig. 1,
the generation of an extra bullet is observed according

Fig. 4. Set of snapshots of the distribution of |U(t = 0, x, y,
z = z0)| in the xy plane displaying the fission of the colliding
bullets into two DBCs. R = 16, v = 0.8, and P = 3.0.

Fig. 5. Set of snapshots of the distribution of |U(t = 0, x, y,
z = z0)| in the xy plane displaying the generation of three
DBCs. R = 16, v = 1.7, and P = 0.50.

to the scheme 1+1→1+1+1. For both head-on and non-
head-on collisions, we obtain one bullet with no velocity
in the center of the mesh and two moving bullets whose
dynamic behavior is similar to the scheme 1+1→1+1.
The initial shape of a bullet is relevant but plays a sec-
ondary role if only one type of optical bullet exists for
a given set of parameters. The shape becomes highly
important when several stable solutions coexist[9]. For
the initial shape and energy of the newly created bullet
which increase with an increase in collision velocity, we
can obtain a single DOB around v = 1.1 but a DBC in
a bigger velocity. The generation of a single DOB for
head-on collision is shown in Fig. 3(b). The quiescent
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bullet turned to be a single DOB which possesses long-
term stability with constant energy after a finite number
of oscillations. Meanwhile, the energy of the quiescent
bullet may be obtained by counting only the energy Q
of the interval of [−3, +3] in the x axis, as shown in
Fig. 3(d). When the initial velocity increases, the newly
created bullet’s radial symmetry is broken and converges
after a long process to a rotating DBC. For the non-head-
on collisions, Fig. 5 gives an example of the generation
of three DBCs. Two incident bullets initially merge
into one pulse whose spatial intensity profile remains
elongated in the space domain until the system can no
longer hold it, resulting in fission into three rotating bul-
lets. The central bullet has a higher energy and broader
profile than the DBC at the chosen set of parameters.
Therefore, its spatial profile shrinks rapidly accompa-
nied with a decrease in energy until the formation of a
DBC. Another two moving bullets keep the central sym-
metry in the mesh and finally evolve into two DBCs if
we choose the initial condition carefully. The rotation
direction of the newly created bullet is different from
that of the two moving bullets. Notably, the transfor-
mation of two colliding solitons into three (one quiescent
and two moving) has also been experimentally observed
and numerically demonstrated in many Hamiltonian and
dissipative systems[20,22,23].

Finally, by colliding two DOBs with large velocities,
we observe the straightforward quasi-elastic passage of
the bullets through each other for both head-on or non-
head-on collisions. Moreover, given the periodic bound-
ary conditions, multiple quasi-elastic collisions can also
be observed by carefully choosing the initial condition.
Compared with the inelastic collisions shown in Fig. 3(a),
there are two differences: the velocities of the two bul-
lets are almost unaffected after the collision compared
with their original velocities. Their energy suffers from
a slight perturbation but finally reaches a stable state,
in which the energy of the bullets slightly fluctuates in
a simple periodic form, agreeing with Refs. [24,25]. The
disturbance caused by the soliton collision may lead to
soliton collapse. However, the bullets in the initial condi-
tion in the current paper have a large shape and energy
which can withstand the disturbance caused by the soli-
ton collision at big velocities.

In conclusion, based on the 3D CGLE equation, we
perform direct numerical simulations and examine sys-
tematically the collisions between two DOBs separated
in space. This model can be applied to model a wide-
aperture laser cavity in the short pulse regime of oper-
ation. By varying the initial velocities and the impact
parameters, we observe three generic properties of bul-
lets and the generation of two or three DBCs occurring
in non-head-on collisions at intermediate values of v.
Our results may be useful to other solitons such as those
in active-Raman-gain medium[26] and radially periodic
optical lattices[27]. The findings can also be applied to
information transmission, all-optical logic, switching de-
vices, and so on.
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nan Provincial Educational Department of China under
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